950 research outputs found

    A Big World in Small Grain: A Review of Natural Milk Kefir Starters

    Get PDF
    Milk kefir is a traditional fermented milk product whose consumption is becoming increasingly popular. The natural starter for kefir production is kefir grain, which consists of various bacterial and yeast species. At the industrial scale, however, kefir grains are rarely used due to their slow growth, complex application, bad reproducibility and high costs. Instead, mixtures of defined lactic acid bacteria and sometimes yeasts are applied, which alter sensory and functional properties compared to natural grain-based milk kefir. In order to be able to mimic natural starter cultures for authentic kefir production, it is a prerequisite to gain deep knowledge about the nature of kefir grains, its microbial composition, morphologic structure, composition of strains on grains and the impact of environmental parameters on kefir grain characteristics. In addition, it is very important to deeply investigate the numerous multi-dimensional interactions among different species, which play important roles on the formation and the functionality of grains

    Electrooptical Determination of Polarizability for On-Line Viability and Vitality Quantification of Lactobacillus plantarum Cultures

    Get PDF
    The rapid assessment of cell viability is crucial for process optimization, e.g., during media selection, determination of optimal environmental growth conditions and for quality control. In the present study, the cells' electric anisotropy of polarizability (AP) as well as the mean cell length in Lactobacillus plantarum batch and fed-batch fermentations were monitored with electrooptical measurements coupled to fully automated sample preparation. It was examined, whether this measurement can be related to the cells' metabolic activity, and thus represents a suitable process analytical technology. It is demonstrated that the AP is an early indicator to distinguish between suitable and unsuitable growth conditions in case of a poor energy regeneration or cell membrane defects in L. plantarum batch and fed-batch cultivations. It was shown that the applied method allowed the monitoring of physiological and morphological changes of cells in various growth phases in response to a low pH-value, substrate concentration changes, temperature alterations, exposure to air and nutrient limitation. An optimal range for growth in batch mode was achieved, if the AP remained above 25·10−28 F·m2 and the mean cell length at ~2.5 μm. It was further investigated, in which way the AP develops after freeze-drying of samples, which were taken in different cultivation phases. It was found that the AP increased most rapidly in resuspended samples from the retardation and late stationary phases, while samples from the early stationary phase recovered slowly. Electrooptical measurements provide valuable information about the physiologic and morphologic state of L. plantarum cells, e.g., when applied as starter cultures or as probiotic compounds.DFG, 325093850, Open Access Publizieren 2017 - 2018 / Technische Universität BerlinEC/H2020/643056/EU/Rapid Bioprocess Development/Biorapi

    Fast Detour Computation for Ride Sharing

    Get PDF
    Todays ride sharing services still mimic a better billboard. They list the offers and allow to search for the source and target city, sometimes enriched with radial search. So finding a connection between big cities is quite easy. These places are on a list of designated origin and distination points. But when you want to go from a small town to another small town, even when they are next to a freeway, you run into problems. You can't find offers that would or could pass by the town easily with little or no detour. We solve this interesting problem by presenting a fast algorithm that computes the offers with the smallest detours w.r.t. a request. Our experiments show that the problem is efficiently solvable in times suitable for a web service implementation. For realistic database size we achieve lookup times of about 5ms and a matching rate of 90% instead of just 70% for the simple matching algorithms used today.Comment: 5 pages, 2 figure environment, 4 includegraphic

    Application of Continuous Culture Methods to Recombinant Protein Production in Microorganisms

    Get PDF
    Depending on the environmental conditions, cells adapt their metabolism and specific growth rate. Rearrangements occur on many different levels such as macromolecular composition, gene and protein expression, morphology and metabolic flux patterns. As the interplay of these processes also determines the output of a recombinant protein producing system, having control over specific growth rate of the culture is advantageous. Continuous culture methods were developed to grow cells in a constant environment and have been used for decades to study basic microbial physiology in a controlled and reproducible manner. Our review summarizes the uses of continuous cultures in cell physiology studies and process development, with a focus on recombinant protein-producing microorganisms

    Fungi as source for new bio-based materials: a patent review

    Get PDF
    Background The circular economy closes loops in industrial manufacturing processes and minimizes waste. A bio-based economy aims to replace fossil-based resources and processes by sustainable alternatives which exploits renewable biomass for the generation of products used in our daily live. A current trend in fungal biotechnology—the production of fungal-based biomaterials—will contribute to both. Results This study gives an overview of various trends and development applications in which fungal mycelium is used as new and sustainable biomaterial. A patent survey covering the last decade (2009–2018) yielded 47 patents and patent applications claiming fungal biomass or fungal composite materials for new applications in the packaging, textile, leather and automotive industries. Furthermore, fungal-based materials are envisaged for thermal insulation and as fire protection materials. Most patents and patent applications describe the use of different lignin- and cellulose-containing waste biomass as substrate for fungal cultivations, covering 27 different fungal species in total. Our search uncovered that most patent activities are on-going in the United States and in China. Conclusion Current patent developments in the field suggest that fungal bio-based materials will considerable shape the future of material sciences and material applications. Fungal materials can be considered as an excellent renewable and degradable material alternative with a high innovation potential and have the potential to replace current petroleum-based materials.TU Berlin, Open-Access-Mittel - 201

    Thermodynamic reaction control of nucleoside phosphorolysis

    Get PDF
    Nucleoside analogs represent a class of important drugs for cancer and antiviral treatments. Nucleoside phosphorylases (NPases) catalyze the phosphorolysis of nucleosides and are widely employed for the synthesis of pentose‐1‐phosphates and nucleoside analogs, which are difficult to access via conventional synthetic methods. However, for the vast majority of nucleosides, it has been observed that either no or incomplete conversion of the starting materials is achieved in NPase‐catalyzed reactions. For some substrates, it has been shown that these reactions are reversible equilibrium reactions that adhere to the law of mass action. In this contribution, we broadly demonstrate that nucleoside phosphorolysis is a thermodynamically controlled endothermic reaction that proceeds to a reaction equilibrium dictated by the substrate‐specific equilibrium constant of phosphorolysis, irrespective of the type or amount of NPase used, as shown by several examples. Furthermore, we explored the temperature‐dependency of nucleoside phosphorolysis equilibrium states and provide the apparent transformed reaction enthalpy and apparent transformed reaction entropy for 24 nucleosides, confirming that these conversions are thermodynamically controlled endothermic reactions. This data allows calculation of the Gibbs free energy and, consequently, the equilibrium constant of phosphorolysis at any given reaction temperature. Overall, our investigations revealed that pyrimidine nucleosides are generally more susceptible to phosphorolysis than purine nucleosides. The data disclosed in this work allow the accurate prediction of phosphorolysis or transglycosylation yields for a range of pyrimidine and purine nucleosides and thus serve to empower further research in the field of nucleoside biocatalysis.DFG, 390540038, EXC 2008: UniSysCatTU Berlin, Open-Access-Mittel - 201

    Human Deoxycytidine Kinase Is a Valuable Biocatalyst for the Synthesis of Nucleotide Analogues

    Get PDF
    Natural ribonucleoside-5’-monophosphates are building blocks for nucleic acids which are used for a number of purposes, including food additives. Their analogues, additionally, are used in pharmaceutical applications. Fludarabine-5´-monophosphate, for example, is effective in treating hematological malignancies. To date, ribonucleoside-5’-monophosphates are mainly produced by chemical synthesis, but the inherent drawbacks of this approach have led to the development of enzymatic synthesis routes. In this study, we evaluated the potential of human deoxycytidine kinase (HsdCK) as suitable biocatalyst for the synthesis of natural and modified ribonucleoside-5’-monophosphates from their corresponding nucleosides. Human dCK was heterologously expressed in E. coli and immobilized onto Nickel-nitrilotriacetic acid (Ni-NTA) superflow. A screening of the substrate spectrum of soluble and immobilized biocatalyst revealed that HsdCK accepts a wide range of natural and modified nucleosides, except for thymidine and uridine derivatives. Upon optimization of the reaction conditions, HsdCK was used for the synthesis of fludarabine-5´-monophosphate using increasing substrate concentrations. While the soluble biocatalyst revealed highest product formation with the lowest substrate concentration of 0.3 mM, the product yield increased with increasing substrate concentrations in the presence of the immobilized HsdCK. Hence, the application of immobilized HsdCK is advantageous upon using high substrate concentration which is relevant in industrial applications.DFG, 392246628, Chemo-enzymatische Synthese von Selen-modifizierten Nukleosiden, Nukleotiden und OligonukleotidenTU Berlin, Open-Access-Mittel - 201

    Antisense RNA based down-regulation of RNaseE in E.coli

    Get PDF
    BACKGROUND: Messenger RNA decay is an important mechanism for controlling gene expression in all organisms. The rate of the mRNA degradation directly affects the steady state concentration of mRNAs and therefore influences the protein synthesis. RNaseE has a key importance for the general mRNA decay in E.coli. While RNaseE initiates the degradation of most mRNAs in E.coli, it is likely that the enzyme is also responsible for the degradation of recombinant RNAs. As RNaseE is essential for cell viability and knockout mutants cannot be cultured, we investigated the possibility for a down-regulation of the intracellular level of RNaseE by antisense RNAs. During this study, an antisense RNA based approach could be established which revealed a strong reduction of the intracellular level of RNaseE in E.coli. RESULTS: Despite the autoregulation of rne mRNA by its gene product, significant antisense downregulation of RNaseE is possible. The expression of antisense RNAs did not effect the cell growth negatively. The amount of antisense RNA was monitored quantitatively by a fluorescence based sandwich hybridisation assay. Induction by anhydrotetracycline was followed by a 25-fold increase of the detectable antisense RNA molecules per cell. The antisense RNA level was maintained above 400 molecules per cell until the stationary phase, which caused the level of expressed antisense RNAs to decrease markedly. Western blot experiments revealed the strongest reduction in the RNaseE protein level 90 min after antisense RNA induction. The cellular level of RNaseE could be decreased to 35% of the wild type level. When the growth entered the stationary phase, the RNaseE level was maintained still at 50 to 60% of the wild type level. CONCLUSION: In difference to eukaryotic cells, where the RNAi technology is widely used, this technology is rather unexplored in bacteria, although different natural systems use antisense RNA-based silencing, and a few studies have earlier indicated the potential of this technology also in prokaryotes. Our results show that even complicated self-regulatory systems such as RNaseE may be controlled by antisense RNA technology, indicating that systems based on antisense RNA expression may have a potential for controlling detrimental factors with plasmid-based constructs in arbitrary strains while maintaining their beneficial characteristics. The study also proved that the RNA sandwich hybridisation technique is directly applicable to quantify small RNA molecules in crude cell extracts, which may have a broader application potential as a monitoring tool in RNA inhibition applications
    corecore